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The dynamics of a three-level atom in a cascamdaddej configuration with both transitions coupled to a
single structured reservoir of quantized electromagnetic field modes is treated using Laplace transform methods
applied to the coupled amplitude equations. In this system two-photon excitation of the reservoir occurs, and
both sequences for emitting the two photons are allowed and included in the theory. An integral equation is
found to govern the complex amplitudes of interest. It is shown that the dynamics of the atomic system is
completely determined in terms of reservoir structure functions, which are products of the mode density with
the coupling constant squared. This dependence on reservoir structure functions rather than on the mode
density or coupling constants alone, shows that it may be possible to extend pseudomode theory to treat
multiphoton excitation of a structured reservoir—pseudomodes being introduced in one-one correspondence
with the poles of reservoir structure functions in the complex frequency plane. A general numerical method for
solving the integral equations based on discretizing frequency space, and applicable to different structured
reservoirs such as higQ-cavities and photonic band-gap systems, is presented. An application to a high-
Q-cavity case with identical Lorentzian reservoir structure functions is made, and the non-Markovian decay of
the excited state shown. A formal solution to the integral equations in terms of right and left eigenfunctions of
a non-Hermitian kernel is also given. The dynamics of the cascade atom, with the two transitions coupled to
two separate structured reservoirs of quantized electromagnetic field modes, is treated similarly to the single
structured reservoir situation. Again the dynamics only depends on reservoir structure functions. As only one
sequence of emitting the two photons now occurs, the integral equation for the amplitudes can be solved
analytically. The non-Markovian decay of the excited state is shown for the sameQhiglvity case of
identical Lorentzian reservoir structure functions, and differs from that for the single reservoir situation.
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I. INTRODUCTION recent review. A number of non-Markovian methods have
been formulated, see, for example, references in RHf.
The quantum optical behavior of atomic systems coupled’hese include non-Markovian master equati¢fs7], the
to a continuum of the quantized electromagnetic field modesime-convolutionless projection operator master equd®dn
has been studied since the early days of quantum physickleisenberg equations of motiof®,10], stochastic wave-
The quantum electromagnetic field is a large system, whicliunction methods for non-Markovian processglkl—16,
can be treated as a bath or reservoir. In most cases the atomethods based on the essential states approximation or resol-
field coupling constants and the electromagnetic field modeent operator$3,17—19, the pseudomode approai@0,21],
density are slowly varying functions of frequency, and theFano diagonalization Ref§22] (and [23,4]), and various
dynamics of the atomic system can be treated via Markoviashort-time approximationg24,25. The last four approaches
master equationfl,2] or equivalent methods such as quan-are easiest to apply, providing clear physical insight into the
tum Langevin equationgsee, e.g., Ref[2] for details of processes involved.
these standard methgdsThese techniques are based on One such method is that of the pseudomode theory
guantum electromagnetic field states with no special distinct20,21]. This method was developed for the case of a two-
tion for any particular mode in terms of photon occupationlevel atom coupled to a structured electromagnetic field res-
number, such as thermal states or broad-band squeezedvoir in the vacuum states and was then restricted to single-
states. Naturally, if one mode of the electromagnetic fieldohoton excitations of the reservoir. The treatment started
was in a special state, such as a large amplitude coherefrom the time-dependent state vector for the atom-field sys-
state(as in the case where the atom is also coupled to a laséem, written as a linear combination of one-photon states
field), then this special mode and the atomic system wouldvith the atom in the ground state and vacuum states with the
be treated as a small quantum system with the remainingtom in the excited state. The basis of the method was that
modes constituting the reservoir, so that Markovian behaviothe atomic dynamics only depended in this case on the be-
would still apply for the small system. havior of a single function, the reservoir structure function,
In certain cases, however, such as for atoms in ldgh- defined as the product of the mode density and the square of
cavities or in photonic band gap materials, either the couthe coupling constant. The complex frequencies and residues
pling constants or the mode densityr both are no longer of the poles of this function in the lower-half complex fre-
slowly varying functions, and standard Markovian masterquency plane enabled so-called pseudomodes to be intro-
equation methods are no longer valisee Ref.[3] for a  duced, one for each of the finite number of poles. The non-
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Markovian equation for the complex amplitude of the statesequence—a reasonable approximation if the two transition
with the atom excitedand the field in the vacuum state frequencies are very different. However, a more general ana-
could then be replaced by Markovian equations involving thdytical method would be desirable, and therefore we aim to

finite number of pseudomode amplitudes together with thesee if pseudomode theory can be extended to treat the mul-
amplitude for the excited atomic state. The pseudomodes af#hoton excitation case without having to make assumptions
originally related mathematically to the reservoir structurebout the order in which the photons are produced. Whether
function, but in some cases their physical origin can be ex2n extension is possible involves first showing that the

plained. For the case of the atom in a higheavity, where atomic dynamics only depends on the behavior of reservoir

the coupling constants vary rapidly near the cavity resonancgifucture functions—in a cascade system we would expect
frequencies while the mode density is slowly varying, thethere to be more than one reservoir structure function, since

pseudomodes can be interpref@d in terms of the cavity two c_oupling constants are present. A next step would be to
quasimode§26]. For the case of an atom in a photonic band-then introduce suitable pseudomode amplitudes, based on the

gap system, no pseudomode theory is yet available, thoughpé’les of the resc_arvoir structure functions and to shovy that
treatment in terms of quasimodigy] can be used to account Markovian equations apply to the_se pseudomode amplitudes.
for the frequency dependence of the coupling constants and "€ Present paper showfellowing the approach of Ref.
mode densities. A treatment of superradiance in a photonict9)) that in the case of a three-level atomic system the dy-
band-gap continuurfi2g] is based on the idea of replacing namics is complgtely controlled by the reservoir ;tructure
the photonic band gap system by a pair of degenerate cavilf;VnCt!O”S' and gives sgveral methods for determining t_he
modes coupled to the multi-atom system and with each otheftomic and field behavior. These methods could be applied
one of the modes being also coupled to a Markovian bath. 1#0th to photonic band-gap and highcavity cases, since the
terms of the treatment in Rd#], such a case would produce 9€neral equation§l4)—(23) defining the solution only de-

a Fano-profile reservoir structure function, with the FanoP€nd on the reservoir structure functions and not on the spe-
window representing the photonic band gap. The two Cavit)plflc prelof structured reservoir involved. However, as a
modes would correspond to two pseudomodes. The problef§St: in this paper we only apply the methods to a situation
for photonic band-gap situations is that the mode density i§V0lving a single Lorentzian reservoir structure function.
actually a discontinuous function of the frequency, and thug Nis Situation could apply when both cascade transitions
the reservoir structure function would not have a finite num-ave the same frequency and are equally coupled to a single

ber of simple poles, though approximate representations dtgh-Q-cavity mode. We also are able to interpret the results

the reservoir structure function in such a form might bevia an _equwalent pseudomode model. Situations _mvolvmg

found. photonic band gaps could be modeled by appropriate reser-
Leaving aside the difficulties associated with the pseudoYOIr structure functiongsee, for example, Ref§20,28).

mode theory for photonic band-gap systems, it would be de- Section I of this paper sets out the theory of non-

sirable to see if pseudomode theory could be extended tlarkovian dynamical be_h_awor for the three-level cascade

cases where multiple-photon excitation of the structured res3yStém where both transitions are coupled to a single struc-

ervoir is involved, as the original treatméi20] only covers tured_ reservoir. Thg state amph';udes are determined frpm

single-photon excitation. The limitation of current treatmentsSelutions to certain integral equations. Approaches to solving

to the single-photon excitation case has been noted in Ref® dynamical equations, including a numerical determina-

[3], but some work has been carried out on cases of multition of the excﬂed—sta_te probablllt_y fora smple_caﬁaad its

photon excitation of the reservoir. Such a multiphoton situaPSeudomode theory interpretatjois presented in Sec. IIl.

tion would apply if the two-level atom was replaced by aSectlor_] IV deals with the simpler case of non-Marko_v_lan

three-level cascad@r laddey system, with an initial condi- dynamics for the cascade system with the two transitions

tion of the atom in the uppermost state and no photon§0Upled to two separate reservoirs, again with numer!cal re-

present in the electromagnetic field. The two-step decay wilfults presented for comparison to the single reservoir case.

generate electromagnetic field states with two photoné\n alternative approach to solving the dynamical equations

present. Another case of multiphoton excitation occurs for af@sed on nonorthogonal eigenfunction methods is set out in

excited two-level atom coupled to a defect mode containing‘\PPendixes A—D. The paper is summarized in Sec. V.

one photon, the atom also being coupled to a photonic band-

gap continuum. Beginning with the essential states approxi-

mation, a numerical method based on replacing the density!l- DYNAMICAL THEORY FOR A SINGLE RESERVOIR

o]‘ mo_des by a discrgtized model has been used in this latter A. The Hamiltonian

situation[29,30 and in the case of the cascade sys{édi. ) )

Similar numerical methods have also been used to treat The model system we will consider has a three-level

stimulated emission in a photonic crysfaP]. The cascade atom, with states denote®), |1), and|2), coupled to a

system case with one transition coupled near resonantly tigServoir of electromagnetic radiation modes heat bath

the edge of a photonic gajand the other coupled to a flat which is to be at effectively zero temperature. The bath

continuum has also been treated via the resolvent operatofodes will be described by a densjy, frequencyw, , and

method in Ref[33]. Although the treatment is analytic, this raising and lowering operatoes anda, .

feature results from being able to ignore processes in which The Hamiltonian for the system is givém the rotating

the two emitted photons are produced in a differentwave approximationby
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12) modes being in the vacuum state. A convention for an or-
dered listing of the modes for the quantum electromagnetic
ho field is assumed, so that double sum oker does not lead
2 to a specific stat¢l,1,) being included twice.
The initial-state vector is assumed to be of the form

1 ' w(0)=[2)l0y), @
h(g)l which allows us to explore the nontrivial case of two photons
appearing in the reservoir as a result of the interaction with
v the excited atom.
[0) Substitution of Eq.(2) into the time-dependent Schro

dinger equation gives a closed set of coupled equations for
the amplitudes in the situation where the initial state is given
by Eg. (3). If we then take Laplace transforms of the the

coupled amplitude equations, we obtain the algebraic equa-

A=h| oy L0(1]+ (1 + 0,)|2)(2|+ D, w,ala, tions
A

FIG. 1. The three-level cascader laddej atomic system. The
atomic states 0, 1, and 2 have transition frequeneigand w,.

3 3 SCy(S)—1=—i2, gyaCir(S+i(wy—wy)),
+; [gu(a}t|0)<1|+a>\|1><0|) G < Ox2C1x W\ — Wy

+gh (@l 1)(2]+ay2)(1)]], (1) sen(9)=-1 2 GuConu(Sti(w,~ w1)
where the atomic transition frequencies asg for 0«1 —j c. +ilw —o
(i.e., between atomic staté8) and|1)) and w, for 12 n,(u2<x) 9uaCoun(SHi{w, = @)
(i.e., between atomic statéd) and|2)); see Fig. 1. The . .
coupling of electromagnetic radiation with frequensy to —IgM\/Z_coM(sﬂ(wh—wl))
the transition -1 involves the frequency-dependent cou- L= .
pling constany, ;. Likewise,g,, represents the coupling of ~igr2Ca(sFi(wmwy)),
the electromagnetic radiation field to the-~2 transition. —
Real coupling constants will be chosen. It is these frequency- SCon ()= —i0)1V2Cy, (s+i (w1~ w))),
dependent coupling constants combined with the mode den- o o
sity which define the reservoir structure. SCoru(S)=—ig il (sti(w1—w,))

B. Coupled amplitude equations —ig\Ciu(sti(wi—wy) (A<up), (4)

The Schrdinger picture state vector for the three-level ..o the Laplace transforms of the amplitudes are

cascade atom coupled to the quantum electromagnetic field — — — . .
may be written as C2,C1) ,Cony @Ndcy, , and the transform variable & These

equations for a cascade system coupled to a single structured
_ _ reservoir are equivalent to those in RE31]. It should be
[P (1)) =cpe (@1t e!|2)]0,)+ > cje @1t VY1)[1,)  noted that similar equations are given in RES3] for the
» case where the two transitions are coupled to two separate
, reservoirs. This case is treated in Sec. IV. The two separate
+ E Cone 2 “N[0)[2,) reservoirs case leads to simpler equations—first, because it is
» assumed that th®,u photons are produced in just one se-
, quence(for example,|2)|0,)—[1)|1,)—[0)|1,1,)), and
+ 2 coue I e0)|1,1,), (2)  second, because states of the fdfh|2,) are not present.

Mo (b<s) While these may be a good approximation for the single
wherec, ¢y, ,Cory » @ndcy,, are the amplitudes of the vari- reservoir case when the transition frequencies are very dif-
ous states in the interaction picture. The radiation states if€rent, the other process|20|0,)—[1)[1,)—|0)|1,1,))
cluded are as follow}0, ) in which all the bath modes are in Would @lso need to be included when the transition frequen-
the vacuum staté, ) in which the mode with frequenay, cies are similar, such as in a quantum harmonic oscillator or
has a single excitation, with other modes being in the? Rydberg atom. _
vacuum state};2, ) in which the mode with frequenay, has Following the approach of Ref19] we change variables
been raised to the second excitation, with other modes bein@ the reduced amplitudés;, ,bs, ,bg, . ,boy, such that
in the vacuum state; and,1,) in which the modes with o
frequenciesw, and w, have a single excitation, with other c,=bhy,
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Cin=0r2b1y s
Conpe= 29,1000, (A<p)

Conn=0x29r1Bon - 5

Thus we have
sbhy(s)— 1= —i§ 92,05\ (s+i(wy—wy), ()
sby(s)=—i X @%bou(s+i(w,—w))
My (u>N)

—i D glaybon(sti(w,— ),

My (L<N\)
—ig2,\2bgy\(s+i(wy— @1))
—ib,(s+i(wo— w))), (7)
Shouy(8)=—12by, (s+i(w;— ®))), ®)

sboy ,(8)=—iby,(s+i(w;—w,))
—iay by, (s+i(01— ) (A<w), (9)

where

N :gug#z
M 0201

(10

Equations analogous to Eq$)—(9) are given below in Egs.
(40)—(42) for the case of a cascade system coupled to two

separate reservoirs.
C. Reservoir structure functions and integral equation
to determine amplitudes

Next we eliminateby, , ,boy, by substitution of Eqs(8)
and(9) in Eq. (7). This gives

iby(s)+ >,
"

Sti(w),—w,)

g2
+> L )5M

7 Sti(o\tw,—w;—0,)

2
gp,la)\,u

sti(wytw,—w1—wy)

}EM(S-‘ri(wﬂ—wz)):O.

(1D

Together with Eq.(6) we now have a set of coupled equa-

tions for theb,(s) and by, (s). If we eliminateb,(s), we
obtain an equation for thie;, alone:
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>

o

S-I-i(w}\—wz)—i-z

2
91
S - Onp
7 Sti(oytw,—w;—0,)

2
S g,u,la)\,u,
sti(oytw,—w1—wy)

2
+gp,2

XDy, (s+i(w,—wy))=—i. (12)

It is useful to rewrite this by dividing by, using the prop-
erties of the Kronecker delta function, and substituting from
Egs.(10) and(12) to obtain

2
. g771
S+I(w)\—w2)+2 -
7 Sti(o\tw,—w;—0,)

)Hl}\[s

+i(w\—0,)]

+2

Ly

2
a -
Gu1 )‘”S+I(w)\+w#—wl—w2) S

XEM(S-H((;)M— w>))

—i
=—. 13
< (13
We note that the terms involving the quantity,, are absent
in similar equations in Ref.33], resulting in their equations

for by, being easily solvable. As mentioned earlier, the ad-
ditional terms we have result from allowing for photons to be
emitted into the single reservoir in two different sequences,
an effect not present in the two separate reservoir case
treated in Ref[33]. In our case, we next convert the sums to
integrals, i.e.2,— [dw,p(w,), wherep(w,) is the mode
density, so that Eq(13) can be written in the form of an
integral equation

A(w)\)f_(w)\)-i-f dw,B(w,,0,)f(w,)=C, (14

with
f(w))=by\(s+i(w)—wy)) (15
A(w))=s+i(wy— wy)
2
gnl
+f dw”p(w”)s-f—i(w)\-f-w,?—wl—wz)’
(16)
_ > N19u2 1
B(w)\’w“)_p(w”)<g“19>\29;¢1 sti(oytw,—01—wy)
2
g,uZ
T ) (17
—i
C= ? (18)

The quantitiesf_(wx), A(w)), B(wy,»,), and C are, of
course, all functions of the Laplace varialdebut for sim-
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plicity of notations is left implicit. The integral equation Finally, we note Eqs(8) and(9) imply thatgow andbg,
(14) is a Fredholm integral equation of the second kisele, are fully determined onck, by, are known, andk, , [Eq.

€9, R.Ef'[34])' Methods of solving suqh equatiqns include (10)] introduces no new frequency dependence as it is inde-
replacing the frequency spaces by grids of points, therebé

. . S ) . endent of frequency. Thus all the reduced amplitudes
converting the integral equation into matrix equations that— —  —

could be solved numerically for each value ®fWe will 2,01, ',bOW’ andboy, can be determlne.d in principle frgm_
reservoir structure functions. As we will see next, this is

discuss one such approach in Sec. Il A. In Appendix D we =>>"" . . ;
also discuss a more formal method of solving the integraF”ﬁ'C'em to determine the reduced density operator describ-

equation, based on the eigenfunctions of the kernel"d the atomic system.
B%w)\ ©,)IA(wy) and of its adj%int Note that the non-Markovian methods could be applied
1 M -

We also find it convenient to write the integral equation in both to photon'lc band-gap and.h!g._hcawty cases, since the
the form general equation§l4)—(23) defining the solution only de-
pend on the reservoir structure functions and not on the spe-
. . cific type of structured reservoir involved. Markovian results
f(wh)+f do, K(o),0,)f(0,)=dw,), (19 can be obtained under conditions where the reservoir struc-
ture functionSp(a))\)gfm2 are slowly varying functions of
where w, . Certain integrals give a constant term whose imaginary
parts are théformally divergent frequency shifts and whose
d(wy)=C/A(w,), (20)  real parts are the decay rates for the staigsand|2).

Koy, 0,)=Bloy,0,)/A(w)). (22) D. Atomic density operator

We note that the coupling constants and mode density The atomic density operator is defined by
appear in the integral equation only in the formpd“.” .
These forms are called reservoir structure functions, as there pa=Tre| W) (¥, (24)
contain all the essential features of the reservoir and its cou-
pling to the atomic system. Specifically, the reservoir struc- o -
ture functions that appear in Eq4.6) and(17) are and it is not difficult to show that

Ry(wy)=p(0))05;, R 2
pa=lba0 2021+ [ donpton)gialbn 012111
Ro(@,)=p(@,)95,- (22)

+

[ [ dosdoptoppio,
A<p

As the coupling constants are proportional to dipole matrix
elements multiplied by the square root of the angular fre-
guency, it is clear that the factoos,,/g,1 andgy,/9,, in 5 5
Eq. (17) are independent of thegﬁi‘reqﬁencies( and w,, . ng29ﬂ1|b0w(t)|2)|O><0|' (29
Hence a third reservoir structure function involving the fac-
tor «, , is not needed. As the dipole matrix elements would
essentially cancel out, the factay, is of order unity. Thus we see that the atomic operator only depends on the
In principle, we can solve the integral equation and thuseduced amplitudesh,(t),bq,(t),bgy,(t)(A=<u) and the
determine theHn[eri(wk—wz)]_ Furthermore, the solu- reservoir structure functions. As the former can be deter-
tions obtain their particular form from just the reservoir mined, in principle, from the reservoir structure functions,
structure functions, rather than the density of states or couve see that the behavior of the cascade atom in the structured
pling constants alone. reservoir is completely determined by the reservoir structure
Next we see that in the new notation Ef) becomes functions(for the initial state given in Eq(3)].
On the basis of this key result, it would follow that any
_ 1 i _ existing system could be replaced by an equivalent system,
ba(s)=<—¢ > globi(s+i(wy—wy)) provided that the reservoir structure functions were the same
» in both models. This is the basis of the treatment of superra-
i ) — diance in a photonic band-gap continuy28], where the
=5 gj doyp(w)\)95,f(w)), (23 photonic band-gap system is replaced by a pair of degenerate
cavity modes coupled to the multiple-atom system and with
. = . each other, one of the modes being also coupled to a Mar-
and again the step to obtainig(s) just involves using the | ian hath. In terms of the treatment in Ref], such a case
reservoir structure functioR,(w,). Note again that(w,) i  would produce the required Fano-profile reservoir structure
a function of the Laplace variablg so the decay of the fynction, with the Fano window representing the photonic
initial atomic statg2) described byb,(s) is nonexponential band gap. The two cavity modes would correspond to two
in general. pseudomodes.

=
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The absence of any coherence terms in the atomic densistructure. The simplest possible case is that for the same
operator is a consequence of the choice of initial state, Ed.orentzian reservoir structure function associated with both
(3). The choice of a more general initial stdven with no  transitions, with all the couplings and transition frequencies
photons presepbf the form equal to each other. That is, we choose a single coupling

constantg, such that
[W(0))=(czl2)+c4|1)+¢0|0))|0,) (26)

. . . . g1=2=0x, (27)
would require the introduction of a more general time- . . :

dependent state vectp¥ (t)) than that given in Eq(2), to

include additional states of the forf@)|0,),/1)|0,), and  which amounts to both the dipole moment matrix elements
|0)]1,). The amplitudes for these additional states are notor the transitions being equal. The atom will also have two

coupled to those for the other states included in By.  equally spaced transitions which are resonant with the reser-
Again, the solutions for these amplitudes just involve reserVoir structure,
voir structure functions and are analogous to those already

discussed in Ref[20] for the simpler case of a two-level

atom coupled to a structured reservoir. However, as indicated

above, the atomic density operator would then include coher-

ence terms. We refer only towg in the following. Thus for the single
reservoir structure function we have

W1= W= wq. (28

Ill. SOLUTIONS FOR THE STATE AMPLITUDES

The integral equation(14) can be solved in different 02 1
ways. These includéa) numerical methods based on con- R,=R,=p,g2= 5 > > (29
verting the integral equation to a matrix equati@), expan- T (wy— o) +(I'12)

sions using biorthogonal eigenfunctions, gl expansions
such as the Fredholm expansi@l]. Only the first of these .as in Ref.[20]. The parametef) represents the strength of

methods will be used here, but as the second approach usg@e coupling andl" represents the width of the reservoir

biorthogonal eigenfunctions may be used in later work an . T ) .
) ) . tructure function. This situation would apply for identical
has not been used previously in quantum optics problems, i

is included here in Appendixes A—D for completeness. cascade transmpns qoupled to a single higioavity que.
Cascade transitions in a photonic band-gap reservoir would

be treated via a different choice of the reservoir structure
functions.
Using this expression for the reservoir structure function
As an illustration we consider a greatly simplified ex- we can determine the functiodf »,),B(w), ,®,), andC in
ample of a three-level system coupled to a reservoir witfEgs.(16)—(18) and then the kernel, E¢21), becomes

A. Numerical solution of the integral equation:
Case of Lorentzian reservoir structure function

rq? [st+i(w\—wo)+T/2][2s+i(w)y+w,—2w)]
27 S[(w,~ wg)?*+(I'12)][s+i(wy+©,~2w0) ]Q(@\~ wo)

K(wy,0,)=

(30

whereQ(w) is a quadratic polynomial such that at discrete frequency points, in effect a discrete basis of spa-
tial 6 functions, e.g.}(,uw,#zK(wA y,). Similarly, f(w,)
andd(w,) are represented at discrete frequency points. From

the definition in Eq.(15), we see that if we introduce the

For this model we thus have an analytic form for the : . L
kernel, but to go further it appears that we need to use fL_mct|on f(wy.1) [which we denote aé(t) for simplicity]

numerical method. We could utilize an eigenfunction
method, such as that of Appendix D, but choose a very f(wy,t)=exd —i(w,—wy)t]by, (1), (33
simple approach to solve E¢L9). The process is simply to
represent Eq(19) as a matrix equation then f(t) is the function whose Laplace transform figs)
_ =f(w, ,S). However, in order to obtain the real and imagi-
(K+Df=d, (32 nary parts off(t), we will need the separate inverse Laplace

. — transformsf_r(s),fi(s) which are the Laplace transforms of
whereK and| are matrices anflandd are vectors. We then  the real and imaginary parts oft) =f,(t) +if;(t). For com-

invert (K +1) to solve forf. ThusK(w, ,,) is represented plex s the latter Laplace transformsannotbe obtained by

Q(w)=(stiw)(stio+I/2)+02 (31
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just writingf_(s) as the sum of its real and imaginary parts.
However, the Laplace transforfp(s) of the real parf,(t) is
real[and similarly the Laplace transforﬁ(s) of the imagi-
nary partf,(t) is real, if the Laplace transform parameter
is real. Hence, the real and imaginary partsf_(cn‘) are equal
to the Laplace transforms of the real and imaginary parts of
f(t) for s on the real axis, so Rés)=f,(s),Imf(s)=f,(s)
for s real. Asf(s) is an analytic function of, the analytic
continuation off,(s)+if;(s) from the real axis will deter-
mine f(s) everywhere.
In this example, if we discretizE(w) ,w,) on anNXN

grid we define theN X N complex matricek, andK; from t
the real and imaginary parts of E(0) on the reals axis,
and then Eq(32) becomes

o-la)

fi) i)

P(t)

FIG. 2. Time evolution of the probability of finding the system
in state 2;P(t) =|b,(t)|2. The reservoir structure function is given
by Eq.(29) with I'=1 andQ)=1 in scaled units. The grid size for
the discretized kernel was 18150 (solid), 100X 100 (dashedg,
and 50< 50 (dotted. In each case a range af30 for ), — wy and

o, — g was chosen. The result for a grid size of ¥&060 (solid

Ko+l —K,

Ki K+l (39

for s on the real axis. The formal solution fér=f,(s) and
fi="fi(s) for realsthen generates the solution fi{is) every-
where. Because of th[@ind having first identified, ,K;, d,
andd, for reals using Eqs(21) and(20)], we cannowregard

Eq. (34) as applying forall s. This approach could not be

used if the real and imaginary partskfw, ,w,) andd(w,)

curve gives a reasonably accurate result.

we see damped oscillations that are a typical manifestation of
non-Markovian processes. As the coupling is reduidgd.
3(b)], the oscillations weaken and then further reductions in
the coupling strengtlf) [Fig. 3(c)] result in no oscillations

on the realk axis are not analytic. The matrix inversion step and decay that is closer to exponential and on a longer time
thus involves a matrix with M? elements compared to, say, scale than the strong coupling cases. Fig) 3till shows
O(N% elements represented by E¢)—(9) in an equivalent some visible initial quadratic behavior because of the rela-
discretized form. tively high value ofQ)/T".

Thus we solve forf, andf; in Eq. (34), and hence deter-
mine theb, (s+i(w),— w,)) of Eq. (15). We then find the

Hz(s) from the scalar product form E@23) obtained from
Eq. (6) so that

B. Equivalent pseudo mode model

The reservoir structure function given in E@9) is ex-
tremely simple and guided by our previous work we can
reproduce the results of Fig. 3, i.e., the populatibs(t)|?,

bar(8)=(1+1-T)/s, from the Markovian master equation

by (s)=—r-1,/s, (35 )
wherer={p,g2,}. Finally, b,(t) is determined by a numeri- 0.9 (©
cal inverse Laplace transform. 0.8 ®)
Figure 2 shows some results for this numerical matrix 0.7 H@
approach with the kernel given in E0), which was de- 06 L
rived from the reservoir structure function in EQ9). The S sl
three curves show the upper-state population for three differ- ’
ent sizes of matrix which were used to discretize the integral 041
equation. Each case used the same param@ters andI’ 031
=1, where there is a distinct non-Markovian evolution that 02
could not be treated perturbatively because of the strong cou- 01}
pling to the reservoir structure. The solid curve in Fig. 2 0
shows a good result that was obtained with a matrix of size 6 1 2 3 4 5 6 7 8
150X 150 for this problem. Reducing the matrix size to t

100x 100 (dasheglresults in only a slight degradation of the i 3. Time evolution of the probability of finding the system
result. However, further reduction of the matrix size affectsin state 2;P(t)=|b,(t)|2. The reservoir structure function is Eq.

the numerical result quite badly.
The effect of changing the coupling strendthis shown

(29) with '=1 and(a) 1=5.0, (b) 2=1.0, and(c) 0=0.3, in
scaled units. The grid size for the discretized kernel was 150

in Fig. 3. The probability of finding the atomic system in the x 150 chosen with a range of 30 for w,—w, and w,— wq in

highest atomic state is shown. For strong couplifig. 3a)]

scaled unitgas in Fig. 2.
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e Do where the bath operatoss, and a, for the first bath now
5= ilVipl— 5 (a'ap+palap—2apa’), (36 couple only to the -2 transition, and the new bath opera-
torsb’, andb,, for the second bath couple only to the-Q
which is given in the interaction picture with the atom-field transition. For the initial-state vector, E@), the state vector
coupling term analogous to Eq(2) no longer contains a term involving
Conx» @nd there is no restriction over the double sk,
V=0(a'0y(1|+a|1)(o|+af|1)(2|+al2)(1]). (37) sin_tce the two types of bath modes are now distinct. We can
write

In this master equation we have introduced a single oscilla- (et wo)t

tor, or pseudomodg20], which is represented by the W (1))=coe™121[2)[0,)[0,,)
harmonic-oscillator operatoesanda’. In this approaclisee ot

Ref.[20]) pseudomodes are introduced as assumed bosonic +; cpeten A)t|1>|1k>|oﬂ>
entities, rather than via constructing pseudomode amplitudes.
A cascade atom resonantly coupled to a damped high-
Q-cavity mode, which is also coupled to a Markovian bath of
vacuum modes, is an example of a physical system which
has the same master equation as ®6). Such a model was involving product states of the atom and one or zero excita-
considered in our earlier worfd], where we showed that tion states of the two baths. The equations for the Laplace
multiple excitations of a structured reservoir could be treatedransforms of the reduced amplitudes, E@—(9), are then

for reservoir structure functions such as E2Q). To utilize  replaced by

the present pseudomode model we solve the master equation

(36) with the initial condition of an empty pseudomode and ey 1 2 ; _

the atom in the stati2). On tracing out the pseudomode, to Sby(s)—1= I; b (Sti(or=wz), (40
obtain atomic properties alone, we can reproduce the results

of the matrix method used with the kernel of BE§O). It

+ 2 Coxue_i(w”+wf‘)t|0>| 1] 1), (39
AN

_ By , — .
should be emphasized that it does not appear to be easy to shyy(s)= —'g Gu1boru(8ti(w,—w1))

find such a simple master equation for more complex reser-

voir structures such as photonic band-gap models with —ib_z(s+i(w2—w>\)), (41)
branch cuts in the reservoir structure function. In such a case

the approach outlined in this pap@vhich only depends on Shpy ()= —iby\(5+i(w—w,)). (42)

the reservoir structure functionmay be useful instead. For
the present Lorentzian model, the agreement between th#fe note that at this point the differences are that, as well as

matrix method given earlier in this section and the mastefne apsence of they,, terms, there are no terms involving

equation(36) is excellent. a,, [as in Egs(7) and(9)] and there are no restrictions over
the sum ovep [as in Eq.(7)] These equations are equivalent
IV. DYNAMICAL THEORY FOR TWO SEPARATE to those in Ref[33].
RESERVOIRS As in the case of both transitions coupled to one single

In thi h ted | | ol h reservoir, the dynamical behavior only depends on reservoir
n this paper we have commented In several places ructure functions, and following the same approach as in

there are differences in our single reservoir treatment fro”%ec. Il D it is easy to see that the atomic density operator is

the simpler case of separate reservoirs coupled to the W90 determined from these functions

transitions in our moqlel system. In our model, 'ghe two ph_o- If we now follow the elimination procedure of Sec. Il C,
tons may be emitted in either order, whereas with the distin- e find the same equatiord4)—(18) for T A B andC

guishable photons in the two reservoir model, only one ordel . .
of emission is involved. So, with the formalism now com- except that the consequence of &g, term being present in

plete, it is instructive to look at the explicit differences be- Eq. (42) is that the quantity8 becomes
tween our model and the simpler two separate reservoirs g2
model of the kind considered in Rdf33]. In this case the B(w,,w,)—B(w,)=p(w )Lz_ (43)
X . . . Lhag!) 2 wog
Hamiltonian in Eq.(1) is replaced by
CruciaIIyE no longer depends om, as previously. Expres-
A=%] 0y 1)(1]+ (01+ 0,)|2)(2| + >, w\ala, sions forf, A, andC are otherwise unchanged.
A The integral equation then simplifies to the easily solvable
form

+2 w,blb,+> g,(b]0)(1|+b,[1)(0])
g g A(wx)f_(wx)Jrf dw,B(w,)f(0,)=C, (44

+ all1y(2|+a,|2%(1)) |, 38
2;’ 92| 1)(2l+ & [2)(1]) 38 for which the solution is
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C

fwy)= (45)

1
1+f do,K(w,,o,) Alen)

In this case the equivalent kernel is separabl¢w, ,w,)
=B(w,)/A(w)).

We can apply our results to the situation analogous to that
treated in Sec. Il A, where both reservoirs, though now
separate, have identical coupling constants and reservoir
structure functions, and the two atomic transitions are
equally spaced and resonant with the reservoir structures. We

P(t)

utilize Eqgs.(27)—(29) and, for this simple model, the kernel
can be easily obtained as

ro? [s+i(wy,—wy)+T/2]

27 (0, we)2+(T'12)?]Q(wy— wp)
(46)

K(w)\ ’w,u,):

FIG. 4. Time evolution of the probability of finding the system
in state 2;P(t)=|b,(t)|?. The reservoir structure function is Eq.
(29) with I'=1 andQ=1.0. The two curves show the effect of
changing from two separate reservdisslid line) to a single reser-
voir (dashed ling (Other parameters are as given in Fig. 2. The

This result may be compared to the previous expression jdashed line in this figure is identical to the solid line in Fig. 2.

Eq. (30) for the case of a single reservoir.
The integralfdw,K(w, ,®,) can be performed by using
a contour in the lower-half plane, and we obtain

do,K( )_QZ s+T “
Cu O TS (4 T2 (s4 1) + 02
We may now find from Eq(16) that
2

s+I'2+i(w)—wg)

so the solution forf_(wx) can be obtained from E@45). We
find that

[(s+T/2)(s+T)+Q2][s+i(wy— wg) + /2]

f_(w)\): I
(s+T/2)[s(s+T)+202]1Q(w), — wy)
(49)

A numerical inversion oif_(wx) can be performed to ob-

02 7 02 B
bz(t)zge “’2+<1—E)e 2604 Bt)

r
+ ﬁe’“’zsin( Bt),

where 82=202—(I'/2)2.

The result for the time evolution of the probability for
finding the atom in the highest atomic state is seen in Fig. 4.
There is clearly a difference from the single reservoir result
shown in Fig. 3(the dashed line in Fig.)4 The present
situation, where both atomic transition frequencies are equal
and resonant with the structured reservoir, should highlight
the difference between the cases of two separate or one
single reservoir. In this situation both photons emitted should
have similar frequencies, and the single reservoir case where
the first emitted photon cannot be distinguished from the
other should give different results to the two distinct reser-
voir case where they can be distinguished.

We note that for strongly coupled systems?2
> (I'/2)?, the time evolution in Eq(51) can be reexpressed

(51

tain b,(t) using the same approach as in Sec. Ill A. How-in the form

ever, the reservoir structure, EQ9), is sufficiently simple
that a solution fob,(t) can be found from Eq49). We first
need to perform the integral in E€R3) which is facilitated
by the fact that Eq(49) has no poles in the lower-half com-
plex planeffor Re(s)>0], while the factorp(w,)g2, in Eq.

(23) has only a single pole in the lower-half complex plane if

we use the example given in E9). Then if we perform
the integral of Eq.(23) around the single lower-half plane
pole we find that

by(S) 1 02 s+T'
S = —_— .
2V s 7 g(s+T/2)[s(s+T)+202]

(50

If we now perform the inverse Laplace transform, we find

— 2 ’ : —I't/2
b,(t)= 202_(F/2)2.5~|n2(,3t/2+ d)e . (52
where
r/2
COS¢= E (53)

What is interesting here are the oscillations that are given by
the square of a sine function, i.e., the probability oscillates as
the fourth power of a sine function which is damped at the
ratel". In the limit O>T" the angle¢ approachesr/2 and

Eq. (52) reduces td,(t) ~cog(Qt/\2)e V2,
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Conversely, for weakly coupled systems)2<(I'/2)?, numerical test for a higl@-cavity situation, where the same
the time evolution in Eq(51) can be reexpressed in the form Lorentzian reservoir structure function applies to both tran-
sitions, showing the non-Markovian decay of the excited

2072 ) T2 state. Results for both the single structured reservoir case and
bo(t)= msmhz( Y2+ ée ' (54) the two separate reservoirs case have been obtained, showing
the different behavior in the two cases. This difference is to
where y2= (I'/2)2— 202 and be expected, as the two photons emitted should have similar
frequencies, and only in the two separate reservoirs cases
/2 should it be possible to distinguish which order the photons
coshé= E (55 were emitted. In this latter case we were able to solve the

model problem analytically. Finally, a formal solution of the
integral equations based on the biorthogonal left and right
eigenfunctions of the non-Hermitian kernel has been pre-
sented for completeness in the appendixes.

Our treatment of the cascade system coupled to a struc-
V. CONCLUSION tured reservoir may be compared to those of &3] in the

The dynamical behavior of a three-level atom in a cascad&V0 Separate reservoirs case and to Re1] in the single
configuration in which both transitions are coupled to a'€S€rvoir case. Both these papers also demonstrate non-
single structured reservoir of electromagnetic field modesMarkovian decay of the excited state. Our fundamental am-
and initially in the upper state, has been analyzed via LaplacBlitide equations in Secs. II B and IV agree with those of
transform methods. This situation involves a two-photon ex{N€se authors. The work in R¢B1] differs from our treat-
citation of the reservoir, and our equations take into accounf’®nt, because it is based on replacing the structured reser-
the two possible sequences in which these two photons adoir with dl'screte modgs and then using numerl_cal methods.
emitted. We have shown that the atomic density operator id € WOrk in Ref.[33] is analytic. However, a direct com-
determined from the solutions of integral equations, in whichParson of the numerical results is not yet possible with ei-
the properties of the structured reservoir only appear via sdher Ref.[31] or Ref.[33], since both applied their theory to-
called reservoir structure functions, all essentially given by2 Photonic band-gap system whereas our present application
the product of the mode density times the square of couplin? for the equal_ly Important situation of_a high-cavity. _
constants. In the cascade system two distinct reservoir stru&Urther applications of our theory involving good analytic
ture functions are involved since there are two transitions@PProximations to the reservoir structure functions for pho-
The dependence of the dynamics solely on reservoir strudOnic band-gap systems will, however, enable more detailed
ture functions is the necessary condition for treating strucSOMparisons to be made.
tured reservoir problems via pseudomode theory, so our re-
sults suggest that it may be possible to extend the ACKNOWLEDGMENTS
pseudomode theory to problems involving more than a
single-photon excitation of the reservoir.

This result also shows that any existing system could b
replaced by an equivalent system, provided that the reservo
structure functions were the same in both models. This is the
basis of the treatment of superradiance in a photonic band- ~ APPENDIX A: INTEGRAL EQUATION KERNEL
gap continuun28] and the general treatment of multiphoton AND ITS EIGENFUNCTIONS
excitation in terms of quasimodes given in our earlier work

[4]. : .
In addition, a similar treatment of the dynamical behavior_(lg) and given by Eq(21) may now be used to define an

of a three-level atom in a cascade configuration coupled t§t€gral operatoK. The effect ofK on any function¢ is

two separate structured reservoirs of electromagnetic field€fined by

modes, and initially in the upper state, has been carried out.

One reservoir is coupled to the upper transition, the other to (Ko),, :J do,K(w,,0,)d(w,). (A1)

the lower transition. This situation again involves a two- »

photon excitation of the reservoir, but now only one possible ) . .

photon emission sequence is involved. In this situation, the 1N€ €igenfunctionsp,(w,) and eigenvalueg;, for the

equations are simpler, and the integral equation for the amintegral operatoK then satisfy

plitudes can be solved analytically. Again, the dynamical fea- R

tures only depend on reservoir structure functions. Ko,=E&,dn (A2)
A numerical method of solving the integral equations

based on discretizing the frequency space has also been o-(in full)

tained, and which can be applied to various structured reser-

voir situations—such as for higQ- cavities and photonic

band-gap systems. Here we hg.?é applied this rF:1ethod in a f o, Koy, 0,) bn(@,) = Endn(@1). (A3)

In the extreme limit of}<TI", Eq. (54) reduces to the Fermi
golden-rule resultb,(t) ~exp(—202/T).

We would like to acknowledge funding from the UK En-
ineering and Physical Sciences Research Council and help-
FI discussions with J.D. Cresser.

The kernelK(w, ,w,) involved in the integral equation
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Note that we are following Ref35] in our definition of the .
eigenvalue of the integral equation, rather than the definition Klm:J f doydw,uf (o)) K(w, 0, )uy(o,) (BS)
used in many mathematical textbodlesg., Ref[34]) where

1/¢, would be the equivalent eigenvalue. and eigenvalues that satisfy
Similarly to Eq.(Al), we can define the adjoint operator
KT via IKjm— £8im|=0. (B6)
~ K T [ i
(KTe),, :f dw, K* (0, ,0,) ¢(w,) (A4) _For the_ operatoK [sge Eq(A4)] the matrix is replaceq by
A its adjoint and clearly its eigenvalues are complex conjugates

of those forKk.

ith eigenfuncti h o . I
with eigenfunctionsd(w,) so that The explicit form forK,,, is found by substitution of ex-

KTo &0 (A5) pressiong21) and(17) into Eq. (B5), which yields
n nYn-
It is straightforward to show thzii(’r has eigenvalues that are Klm:f f doydw,,Uf (o)) A 1
complex conjugates of those f&r (see Appendix B for de- (@)
tails). As K will in general be non-Hermitian, the eigenfunc- 1
: . . - 5> 9.2
tions ¢, do not satisfy standard orthogonality conditions. X P(wﬂ)gﬂlg 9,1 StHi(w)+w,— 01— )
Instead theg,, and thed,, satisfy so-called biorthogonality A23ul MU TR
conditions p(®,)92%,
+ % Un(®@,). (B7)
| doronnor=om (a8

The integral overo, will involve the reservoir structure

The normalization result of unity fan=m can be arranged functions as defined in E¢22). The functionA(«,) is also

by scaling either thed, or ¢, by appropriate factors. Al- obtainable from the reservoir structure functidrsee Eq.
though these results are familiar in regard to the mode func18)]- Note thatg,19,,2/9)29,1 is independent of frequency
tions for unstable optical systenis35,36)), these are not "M Eq. (B7). . _ .
widely used in quantum optics. So, for completeness, a deri- N summary, the matrix,, and hence the eigenfunctions
vation of Eq.(A6) is presented in Appendix C. A formal én,0, and elg_envalues are all obf[alned from the reservoir
method of determining the eigenfunctiods, and 6, is set structure functions and given functions, such as the basis set

out in Appendix B. Un-

APPENDIX B: REPRESENTATION OF THE KERNEL APPENDIX C: BIORTHOGONALITY
OF EIGENFUNCTIONS
We expandg,, in an orthonormal basis,, so that
To show that the eigenfunctions satisfy a biorthogonality

b)) = zm: ")) B1) condition we first write from Eq9A2) and(A3), (A4), (A5)

W|th f dwp,K(w)\ lwu)gbn(wp):gn(ﬁn(w)\):

f dorUf (©3)Un(©)) = Gim- (B2) f o, K (@, ,0,) 05(0,) = Enbi(@)).  (CD)

Then we can write EQAS) as After multiplying the first equation by} (w,), the second

\ . by ¢,(w,), and then integrating oves, , we find that
Y | do,anK(o,,0,)Un(@,) =2 afin(o,).

(Bg) f f dw)\dwﬂa*m(w)\)K(w)\lw,u)(ﬁn(w,u)
Then if we multiply byu; (w,) and integrate, we find
:fnf dwxé’ﬁq(wx)qﬁn(wx),
% (f f dw)\dw,uul*(wx)K(wArwy,)um(w,u,)_‘slmgn a’%
=0, (B4) f f doydw, ¢n(w\)K(wy ,wﬂ)ﬁﬁ(w#)
which must be true for all values df Equation(B4) is a _ "
matrix eigenvalue equation with the matrix _émJ ooy (@) n(@y). (€2
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After a change of variable in the second equation, the left- .
hand sides are equal and we then conclude that anJ dw) 67 (w\)d(w)). (D2)
(fn—im)f dw, 0% (w)) n(wy) =0, (c3)  Substituting Eq(D1) into Eq.(19) and using the eigenvalue
equation(A3) we find that

so that the biorthogonality condition - -
S Toda(on+ S To [ doK(o,0,000(0,0
j dwxﬁﬁq(wx)cﬁn(wh):O (CH
:; dydn(w)),

applies unlesg,=¢&,.

APPENDIX D: INTEGRAL EQUATION SOLUTION —
IN TERMS OF EIGENFUNCTIONS OF K 2 (fot énfr—dp) dn(w)) =0. (D3)

We will assumehat the set of eigenfunctions, form a

basis for expanding the solutigi{e, ) [to Eq. (19)]. Like- Using the biorthogonality result for the eigenval§jewe see

wise we will assume that(w,) can be expanded in terms of that
the ¢, so that f_n(1+ £)—d, =0, (D4)
fwy)= ; fan(@)), so that providedt,# — 1
—  d,
A(00) =3 du(). GH e 9

Using the biorthogonality of the eigenfunctiof&q. (A6)] which g_ives the solutions for the expgnsion coefficien?s% for
the expansion coefficients can be found as f(w)) in terms of known quantities. The quantities
fr,én(w)),K(w),,w,), and&, are, of course, all functions

— — of the Laplace variabls, but for simplicity of notations is
fn:fd‘”“g:(“’k)f(“’h)' left implicri)t. Py
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