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Non-Markovian decay of a three-level cascade atom in a structured reservoir
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The dynamics of a three-level atom in a cascade~or ladder! configuration with both transitions coupled to a
single structured reservoir of quantized electromagnetic field modes is treated using Laplace transform methods
applied to the coupled amplitude equations. In this system two-photon excitation of the reservoir occurs, and
both sequences for emitting the two photons are allowed and included in the theory. An integral equation is
found to govern the complex amplitudes of interest. It is shown that the dynamics of the atomic system is
completely determined in terms of reservoir structure functions, which are products of the mode density with
the coupling constant squared. This dependence on reservoir structure functions rather than on the mode
density or coupling constants alone, shows that it may be possible to extend pseudomode theory to treat
multiphoton excitation of a structured reservoir—pseudomodes being introduced in one-one correspondence
with the poles of reservoir structure functions in the complex frequency plane. A general numerical method for
solving the integral equations based on discretizing frequency space, and applicable to different structured
reservoirs such as high-Q cavities and photonic band-gap systems, is presented. An application to a high-
Q-cavity case with identical Lorentzian reservoir structure functions is made, and the non-Markovian decay of
the excited state shown. A formal solution to the integral equations in terms of right and left eigenfunctions of
a non-Hermitian kernel is also given. The dynamics of the cascade atom, with the two transitions coupled to
two separate structured reservoirs of quantized electromagnetic field modes, is treated similarly to the single
structured reservoir situation. Again the dynamics only depends on reservoir structure functions. As only one
sequence of emitting the two photons now occurs, the integral equation for the amplitudes can be solved
analytically. The non-Markovian decay of the excited state is shown for the same high-Q-cavity case of
identical Lorentzian reservoir structure functions, and differs from that for the single reservoir situation.

DOI: 10.1103/PhysRevA.68.033809 PACS number~s!: 42.50.Ct, 03.65.Yz
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I. INTRODUCTION

The quantum optical behavior of atomic systems coup
to a continuum of the quantized electromagnetic field mo
has been studied since the early days of quantum phy
The quantum electromagnetic field is a large system, wh
can be treated as a bath or reservoir. In most cases the a
field coupling constants and the electromagnetic field m
density are slowly varying functions of frequency, and t
dynamics of the atomic system can be treated via Markov
master equations@1,2# or equivalent methods such as qua
tum Langevin equations~see, e.g., Ref.@2# for details of
these standard methods!. These techniques are based
quantum electromagnetic field states with no special dist
tion for any particular mode in terms of photon occupati
number, such as thermal states or broad-band sque
states. Naturally, if one mode of the electromagnetic fi
was in a special state, such as a large amplitude cohe
state~as in the case where the atom is also coupled to a l
field!, then this special mode and the atomic system wo
be treated as a small quantum system with the remain
modes constituting the reservoir, so that Markovian beha
would still apply for the small system.

In certain cases, however, such as for atoms in highQ
cavities or in photonic band gap materials, either the c
pling constants or the mode density~or both! are no longer
slowly varying functions, and standard Markovian mas
equation methods are no longer valid~see Ref.@3# for a
1050-2947/2003/68~3!/033809~13!/$20.00 68 0338
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recent review!. A number of non-Markovian methods hav
been formulated, see, for example, references in Ref.@4#.
These include non-Markovian master equations@5–7#, the
time-convolutionless projection operator master equation@8#,
Heisenberg equations of motion@9,10#, stochastic wave-
function methods for non-Markovian processes@11–16#,
methods based on the essential states approximation or r
vent operators@3,17–19#, the pseudomode approach@20,21#,
Fano diagonalization Refs.@22# ~and @23,4#!, and various
short-time approximations@24,25#. The last four approache
are easiest to apply, providing clear physical insight into
processes involved.

One such method is that of the pseudomode the
@20,21#. This method was developed for the case of a tw
level atom coupled to a structured electromagnetic field r
ervoir in the vacuum states and was then restricted to sin
photon excitations of the reservoir. The treatment star
from the time-dependent state vector for the atom-field s
tem, written as a linear combination of one-photon sta
with the atom in the ground state and vacuum states with
atom in the excited state. The basis of the method was
the atomic dynamics only depended in this case on the
havior of a single function, the reservoir structure functio
defined as the product of the mode density and the squa
the coupling constant. The complex frequencies and resid
of the poles of this function in the lower-half complex fre
quency plane enabled so-called pseudomodes to be in
duced, one for each of the finite number of poles. The n
©2003 The American Physical Society09-1



at

th
th
a
re
ex

n
he

d
gh
t
a
n
g
v
he
.
e
n
vit
le
y
u

m
s
be

do
d
d
re

nt
R
ul
ua
a

on
w
on
a

in
n

ox
s
tt

re

y
t

at
is
ic
n

tion
na-
to

mul-
ons
ther
the
voir
ect
nce

to
n the
hat
des.

dy-
re

the
lied

pe-
a

ion
n.
ns

ngle
lts

ing
ser-

n-
de

ruc-
rom
ing
na-

.
an
ons
re-

ase.
ns
t in

vel

th

B. J. DALTON AND B. M. GARRAWAY PHYSICAL REVIEW A 68, 033809 ~2003!
Markovian equation for the complex amplitude of the st
with the atom excited~and the field in the vacuum state!
could then be replaced by Markovian equations involving
finite number of pseudomode amplitudes together with
amplitude for the excited atomic state. The pseudomodes
originally related mathematically to the reservoir structu
function, but in some cases their physical origin can be
plained. For the case of the atom in a high-Q cavity, where
the coupling constants vary rapidly near the cavity resona
frequencies while the mode density is slowly varying, t
pseudomodes can be interpreted@4# in terms of the cavity
quasimodes@26#. For the case of an atom in a photonic ban
gap system, no pseudomode theory is yet available, thou
treatment in terms of quasimodes@27# can be used to accoun
for the frequency dependence of the coupling constants
mode densities. A treatment of superradiance in a photo
band-gap continuum@28# is based on the idea of replacin
the photonic band gap system by a pair of degenerate ca
modes coupled to the multi-atom system and with each ot
one of the modes being also coupled to a Markovian bath
terms of the treatment in Ref.@4#, such a case would produc
a Fano-profile reservoir structure function, with the Fa
window representing the photonic band gap. The two ca
modes would correspond to two pseudomodes. The prob
for photonic band-gap situations is that the mode densit
actually a discontinuous function of the frequency, and th
the reservoir structure function would not have a finite nu
ber of simple poles, though approximate representation
the reservoir structure function in such a form might
found.

Leaving aside the difficulties associated with the pseu
mode theory for photonic band-gap systems, it would be
sirable to see if pseudomode theory could be extende
cases where multiple-photon excitation of the structured
ervoir is involved, as the original treatment@20# only covers
single-photon excitation. The limitation of current treatme
to the single-photon excitation case has been noted in
@3#, but some work has been carried out on cases of m
photon excitation of the reservoir. Such a multiphoton sit
tion would apply if the two-level atom was replaced by
three-level cascade~or ladder! system, with an initial condi-
tion of the atom in the uppermost state and no phot
present in the electromagnetic field. The two-step decay
generate electromagnetic field states with two phot
present. Another case of multiphoton excitation occurs for
excited two-level atom coupled to a defect mode contain
one photon, the atom also being coupled to a photonic ba
gap continuum. Beginning with the essential states appr
mation, a numerical method based on replacing the den
of modes by a discretized model has been used in this la
situation@29,30# and in the case of the cascade system@31#.
Similar numerical methods have also been used to t
stimulated emission in a photonic crystal@32#. The cascade
system case with one transition coupled near resonantl
the edge of a photonic gap~and the other coupled to a fla
continuum! has also been treated via the resolvent oper
method in Ref.@33#. Although the treatment is analytic, th
feature results from being able to ignore processes in wh
the two emitted photons are produced in a differe
03380
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sequence—a reasonable approximation if the two transi
frequencies are very different. However, a more general a
lytical method would be desirable, and therefore we aim
see if pseudomode theory can be extended to treat the
tiphoton excitation case without having to make assumpti
about the order in which the photons are produced. Whe
an extension is possible involves first showing that
atomic dynamics only depends on the behavior of reser
structure functions—in a cascade system we would exp
there to be more than one reservoir structure function, si
two coupling constants are present. A next step would be
then introduce suitable pseudomode amplitudes, based o
poles of the reservoir structure functions and to show t
Markovian equations apply to these pseudomode amplitu

The present paper shows~following the approach of Ref.
@19#! that in the case of a three-level atomic system the
namics is completely controlled by the reservoir structu
functions, and gives several methods for determining
atomic and field behavior. These methods could be app
both to photonic band-gap and high-Q-cavity cases, since the
general equations~14!–~23! defining the solution only de-
pend on the reservoir structure functions and not on the s
cific type of structured reservoir involved. However, as
test, in this paper we only apply the methods to a situat
involving a single Lorentzian reservoir structure functio
This situation could apply when both cascade transitio
have the same frequency and are equally coupled to a si
high-Q-cavity mode. We also are able to interpret the resu
via an equivalent pseudomode model. Situations involv
photonic band gaps could be modeled by appropriate re
voir structure functions~see, for example, Refs.@20,28#!.

Section II of this paper sets out the theory of no
Markovian dynamical behavior for the three-level casca
system where both transitions are coupled to a single st
tured reservoir. The state amplitudes are determined f
solutions to certain integral equations. Approaches to solv
the dynamical equations, including a numerical determi
tion of the excited-state probability for a simple case~and its
pseudomode theory interpretation! is presented in Sec. III
Section IV deals with the simpler case of non-Markovi
dynamics for the cascade system with the two transiti
coupled to two separate reservoirs, again with numerical
sults presented for comparison to the single reservoir c
An alternative approach to solving the dynamical equatio
based on nonorthogonal eigenfunction methods is set ou
Appendixes A–D. The paper is summarized in Sec. V.

II. DYNAMICAL THEORY FOR A SINGLE RESERVOIR

A. The Hamiltonian

The model system we will consider has a three-le
atom, with states denotedu0&, u1&, and u2&, coupled to a
reservoir of electromagnetic radiation modes~or heat bath!
which is to be at effectively zero temperature. The ba
modes will be described by a densityrl , frequencyvl , and
raising and lowering operatorsâl

† and âl .
The Hamiltonian for the system is given~in the rotating

wave approximation! by
9-2
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NON-MARKOVIAN DECAY OF A THREE LEVEL . . . PHYSICAL REVIEW A 68, 033809 ~2003!
Ĥ5\Fv1u1&^1u1~v11v2!u2&^2u1(
l

vlâl
†âl

1(
l

@gl1~ âl
†u0&^1u1âlu1&^0u!

1gl2~ âl
†u1&^2u1âlu2&^1u!#G , ~1!

where the atomic transition frequencies arev1 for 0↔1
~i.e., between atomic statesu0& and u1&) and v2 for 1↔2
~i.e., between atomic statesu1& and u2&); see Fig. 1. The
coupling of electromagnetic radiation with frequencyvl to
the transition 0↔1 involves the frequency-dependent co
pling constantgl1. Likewise,gl2 represents the coupling o
the electromagnetic radiation field to the 1↔2 transition.
Real coupling constants will be chosen. It is these frequen
dependent coupling constants combined with the mode d
sity which define the reservoir structure.

B. Coupled amplitude equations

The Schro¨dinger picture state vector for the three-lev
cascade atom coupled to the quantum electromagnetic
may be written as

uC~ t !&5c2e2 i (v11v2)tu2&u0l&1(
l

c1le2 i (v11vl)tu1&u1l&

1(
l

c0lle22ivltu0&u2l&

1 (
l,m,(l,m)

c0lme2 i (vl1vm)tu0&u1l1m&, ~2!

wherec2 ,c1l ,c0ll , andc0lm are the amplitudes of the var
ous states in the interaction picture. The radiation states
cluded are as follow:u0l& in which all the bath modes are i
the vacuum state;u1l& in which the mode with frequencyvl

has a single excitation, with other modes being in
vacuum state;u2l& in which the mode with frequencyvl has
been raised to the second excitation, with other modes b
in the vacuum state; andu1l1m& in which the modes with
frequenciesvl and vm have a single excitation, with othe

FIG. 1. The three-level cascade~or ladder! atomic system. The
atomic states 0, 1, and 2 have transition frequenciesv1 andv2.
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modes being in the vacuum state. A convention for an
dered listing of the modesl for the quantum electromagneti
field is assumed, so that double sum overl,m does not lead
to a specific stateu1l1m& being included twice.

The initial-state vector is assumed to be of the form

uC~0!&5u2&u0l&, ~3!

which allows us to explore the nontrivial case of two photo
appearing in the reservoir as a result of the interaction w
the excited atom.

Substitution of Eq.~2! into the time-dependent Schro¨-
dinger equation gives a closed set of coupled equations
the amplitudes in the situation where the initial state is giv
by Eq. ~3!. If we then take Laplace transforms of the th
coupled amplitude equations, we obtain the algebraic eq
tions

sc̄2~s!2152 i(
l

gl2c̄1l„s1 i ~vl2v2!…,

sc̄1l~s!52 i (
m,(m.l)

gm1c̄0lm„s1 i ~vm2v1!…

2 i (
m,(m,l)

gm1c̄0ml„s1 i ~vm2v1!…

2 igl1A2c̄0ll„s1 i ~vl2v1!…

2 igl2c̄2„s1 i ~v22vl!…,

sc̄0ll~s!52 igl1A2c̄1l„s1 i ~v12vl!…,

sc̄0lm~s!52 igm1c̄1l„s1 i ~v12vm!…

2 igl1c̄1m„s1 i ~v12vl!… ~l,m!, ~4!

where the Laplace transforms of the amplitudes
c̄2 ,c̄1l ,c̄0ll and c̄0lm and the transform variable iss. These
equations for a cascade system coupled to a single struct
reservoir are equivalent to those in Ref.@31#. It should be
noted that similar equations are given in Ref.@33# for the
case where the two transitions are coupled to two sepa
reservoirs. This case is treated in Sec. IV. The two sepa
reservoirs case leads to simpler equations—first, because
assumed that thel,m photons are produced in just one s
quence~for example, u2&u0l&→u1&u1l&→u0&u1l1m&), and
second, because states of the formu0&u2l& are not present.
While these may be a good approximation for the sin
reservoir case when the transition frequencies are very
ferent, the other process (u2&u0l&→u1&u1m&→u0&u1l1m&)
would also need to be included when the transition frequ
cies are similar, such as in a quantum harmonic oscillato
a Rydberg atom.

Following the approach of Ref.@19# we change variables
to the reduced amplitudesb̄2 ,b̄1l ,b̄0lm ,b̄0ll such that

c̄25b̄2 ,
9-3
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B. J. DALTON AND B. M. GARRAWAY PHYSICAL REVIEW A 68, 033809 ~2003!
c̄1l5gl2b̄1l ,

c̄0lm5gl2gm1b̄0lm ~l,m!

c̄0ll5gl2gl1b̄0ll . ~5!

Thus we have

sb̄2~s!2152 i(
l

gl2
2 b̄1l„s1 i ~vl2v2!…, ~6!

sb̄1l~s!52 i (
m,(m.l)

gm1
2 b̄0lm„s1 i ~vm2v1!…

2 i (
m,(m,l)

gm1
2 almb̄0ml„s1 i ~vm2v1!…,

2 igl1
2 A2b̄0ll„s1 i ~vl2v1!…

2 i b̄2„s1 i ~v22vl!…, ~7!

sb̄0ll~s!52 iA2b̄1l„s1 i ~v12vl!…, ~8!

sb̄0lm~s!52 i b̄1l„s1 i ~v12vm!…

2 ialmb̄1m„s1 i ~v12vl!… ~l,m!, ~9!

where

alm5
gl1gm2

gl2gm1
. ~10!

Equations analogous to Eqs.~6!–~9! are given below in Eqs
~40!–~42! for the case of a cascade system coupled to
separate reservoirs.

C. Reservoir structure functions and integral equation
to determine amplitudes

Next we eliminateb̄0lm ,b̄0ll by substitution of Eqs.~8!
and ~9! in Eq. ~7!. This gives

i b̄2~s!1(
m

F S s1 i ~vl2v2!

1(
h

gh1
2

s1 i ~vl1vh2v12v2! D dlm

1
gm1

2 alm

s1 i ~vl1vm2v12v2!G b̄1m„s1 i ~vm2v2!…50.

~11!

Together with Eq.~6! we now have a set of coupled equ
tions for theb̄2(s) and b̄1l(s). If we eliminate b̄2(s), we
obtain an equation for theb̄1l alone:
03380
o

(
m

FsS s1 i ~vl2v2!1(
h

gh1
2

s1 i ~vl1vh2v12v2! D dlm

1s
gm1

2 alm

s1 i ~vl1vm2v12v2!
1gm2

2 G
3b̄1m„s1 i ~vm2v2!…52 i . ~12!

It is useful to rewrite this by dividing bys, using the prop-
erties of the Kronecker delta function, and substituting fro
Eqs.~10! and ~12! to obtain

S s1 i ~vl2v2!1(
h

gh1
2

s1 i ~vl1vh2v12v2! D b̄1l@s

1 i ~vl2v2!#

1(
m

S gm1
2 alm

1

s1 i ~vl1vm2v12v2!
1

gm2
2

s D
3b̄1m„s1 i ~vm2v2!…

5
2 i

s
. ~13!

We note that the terms involving the quantityalm are absent
in similar equations in Ref.@33#, resulting in their equations
for b̄1l being easily solvable. As mentioned earlier, the a
ditional terms we have result from allowing for photons to
emitted into the single reservoir in two different sequenc
an effect not present in the two separate reservoir c
treated in Ref.@33#. In our case, we next convert the sums
integrals, i.e.,(m→*dvmr(vm), wherer(vm) is the mode
density, so that Eq.~13! can be written in the form of an
integral equation

A~vl! f̄ ~vl!1E dvmB~vl ,vm! f̄ ~vm!5C, ~14!

with

f̄ ~vl!5b̄1l„s1 i ~vl2v2!… ~15!

A~vl!5s1 i ~vl2v2!

1E dvhr~vh!
gh1

2

s1 i ~vl1vh2v12v2!
,

~16!

B~vl ,vm!5r~vm!S gm1
2 gl1gm2

gl2gm1

1

s1 i ~vl1vm2v12v2!

1
gm2

2

s D , ~17!

C5
2 i

s
. ~18!

The quantitiesf̄ (vl), A(vl), B(vl ,vm), and C are, of
course, all functions of the Laplace variables, but for sim-
9-4
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NON-MARKOVIAN DECAY OF A THREE LEVEL . . . PHYSICAL REVIEW A 68, 033809 ~2003!
plicity of notation s is left implicit. The integral equation
~14! is a Fredholm integral equation of the second kind~see,
e.g., Ref.@34#!. Methods of solving such equations includ
replacing the frequency spaces by grids of points, ther
converting the integral equation into matrix equations t
could be solved numerically for each value ofs. We will
discuss one such approach in Sec. III A. In Appendix D
also discuss a more formal method of solving the integ
equation, based on the eigenfunctions of the ker
B(vl ,vm)/A(vl) and of its adjoint.

We also find it convenient to write the integral equation
the form

f̄ ~vl!1E dvmK~vl ,vm! f̄ ~vm!5d~vl!, ~19!

where

d~vl!5C/A~vl!, ~20!

K~vl ,vm!5B~vl ,vm!/A~vl!. ~21!

We note that the coupling constants and mode den
appear in the integral equation only in the form ‘‘rg2.’’
These forms are called reservoir structure functions, as t
contain all the essential features of the reservoir and its c
pling to the atomic system. Specifically, the reservoir str
ture functions that appear in Eqs.~16! and ~17! are

R1~vl!5r~vl!gl1
2 ,

R2~vl!5r~vl!gl2
2 . ~22!

As the coupling constants are proportional to dipole ma
elements multiplied by the square root of the angular f
quency, it is clear that the factorsgm2 /gm1 and gl1 /gl2 in
Eq. ~17! are independent of the frequenciesvl and vm .
Hence a third reservoir structure function involving the fa
tor alm is not needed. As the dipole matrix elements wou
essentially cancel out, the factoralm is of order unity.

In principle, we can solve the integral equation and th
determine theb̄1l@s1 i (vl2v2)#. Furthermore, the solu
tions obtain their particular form from just the reservo
structure functions, rather than the density of states or c
pling constants alone.

Next we see that in the new notation Eq.~6! becomes

b̄2~s!5
1

s
2

i

s (
l

gl2
2 b̄1l„s1 i ~vl2v2!…

[
1

s
2

i

sE dvlr~vl!gl2
2 f̄ ~vl!, ~23!

and again the step to obtainingb̄2(s) just involves using the
reservoir structure functionR2(vl). Note again thatf̄ (vl) is
a function of the Laplace variables, so the decay of the
initial atomic stateu2& described byb̄2(s) is nonexponential
in general.
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Finally, we note Eqs.~8! and~9! imply that b̄0lm andb̄0ll

are fully determined onceb̄2 ,b̄1l are known, andalm @Eq.
~10!# introduces no new frequency dependence as it is in
pendent of frequency. Thus all the reduced amplitud
b̄2 ,b̄1l ,b̄0lm , andb̄0ll can be determined in principle from
reservoir structure functions. As we will see next, this
sufficient to determine the reduced density operator desc
ing the atomic system.

Note that the non-Markovian methods could be appl
both to photonic band-gap and high-Q-cavity cases, since the
general equations~14!–~23! defining the solution only de-
pend on the reservoir structure functions and not on the s
cific type of structured reservoir involved. Markovian resu
can be obtained under conditions where the reservoir st
ture functionsr(vl)gl1,l2

2 are slowly varying functions of
vl . Certain integrals give a constant term whose imagin
parts are the~formally divergent! frequency shifts and whos
real parts are the decay rates for the statesu1& and u2&.

D. Atomic density operator

The atomic density operator is defined by

r̂A5TrFuC&^Cu, ~24!

and it is not difficult to show that

r̂A5ub2~ t !u2u2&^2u1S E dvlr~vl!gl2
2 ub1l~ t !u2D u1&^1u

1S E E
l<m

dvldvmr~vl!r~vm!

3gl2
2 gm1

2 ub0lm~ t !u2D u0&^0u. ~25!

Thus we see that the atomic operator only depends on
reduced amplitudesb2(t),b1l(t),b0lm(t)(l<m) and the
reservoir structure functions. As the former can be de
mined, in principle, from the reservoir structure function
we see that the behavior of the cascade atom in the struct
reservoir is completely determined by the reservoir struct
functions@for the initial state given in Eq.~3!#.

On the basis of this key result, it would follow that an
existing system could be replaced by an equivalent syst
provided that the reservoir structure functions were the sa
in both models. This is the basis of the treatment of supe
diance in a photonic band-gap continuum@28#, where the
photonic band-gap system is replaced by a pair of degene
cavity modes coupled to the multiple-atom system and w
each other, one of the modes being also coupled to a M
kovian bath. In terms of the treatment in Ref.@4#, such a case
would produce the required Fano-profile reservoir struct
function, with the Fano window representing the photon
band gap. The two cavity modes would correspond to t
pseudomodes.
9-5
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B. J. DALTON AND B. M. GARRAWAY PHYSICAL REVIEW A 68, 033809 ~2003!
The absence of any coherence terms in the atomic den
operator is a consequence of the choice of initial state,
~3!. The choice of a more general initial state~even with no
photons present! of the form

uC~0!&5~c2u2&1c1u1&1c0u0&)u0l& ~26!

would require the introduction of a more general tim
dependent state vectoruC(t)& than that given in Eq.~2!, to
include additional states of the formu0&u0l&,u1&u0l&, and
u0&u1l&. The amplitudes for these additional states are
coupled to those for the other states included in Eq.~2!.
Again, the solutions for these amplitudes just involve res
voir structure functions and are analogous to those alre
discussed in Ref.@20# for the simpler case of a two-leve
atom coupled to a structured reservoir. However, as indica
above, the atomic density operator would then include co
ence terms.

III. SOLUTIONS FOR THE STATE AMPLITUDES

The integral equation~14! can be solved in differen
ways. These include~a! numerical methods based on co
verting the integral equation to a matrix equation,~b! expan-
sions using biorthogonal eigenfunctions, and~c! expansions
such as the Fredholm expansion@34#. Only the first of these
methods will be used here, but as the second approach u
biorthogonal eigenfunctions may be used in later work a
has not been used previously in quantum optics problem
is included here in Appendixes A–D for completeness.

A. Numerical solution of the integral equation:
Case of Lorentzian reservoir structure function

As an illustration we consider a greatly simplified e
ample of a three-level system coupled to a reservoir w
he
e
on
er
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structure. The simplest possible case is that for the sa
Lorentzian reservoir structure function associated with b
transitions, with all the couplings and transition frequenc
equal to each other. That is, we choose a single coup
constantgl such that

gl15gl25gl , ~27!

which amounts to both the dipole moment matrix eleme
for the transitions being equal. The atom will also have t
equally spaced transitions which are resonant with the re
voir structure,

v15v25v0 . ~28!

We refer only tov0 in the following. Thus for the single
reservoir structure function we have

R15R25rlgl
25

GV2

2p

1

~vl2v0!21~G/2!2
~29!

as in Ref.@20#. The parameterV represents the strength o
the coupling andG represents the width of the reservo
structure function. This situation would apply for identic
cascade transitions coupled to a single high-Q-cavity mode.
Cascade transitions in a photonic band-gap reservoir wo
be treated via a different choice of the reservoir struct
functions.

Using this expression for the reservoir structure funct
we can determine the functionsA(vl),B(vl ,vm), andC in
Eqs.~16!–~18! and then the kernel, Eq.~21!, becomes
K~vl ,vm!5
GV2

2p

@s1 i ~vl2v0!1G/2#@2s1 i ~vl1vm22v0!#

s@~vm2v0!21~G/2!2#@s1 i ~vl1vm22v0!#Q~vl2v0!
, ~30!
pa-

om
e

i-
ce
f

whereQ(v) is a quadratic polynomial such that

Q~v!5~s1 iv!~s1 iv1G/2!1V2. ~31!

For this model we thus have an analytic form for t
kernel, but to go further it appears that we need to us
numerical method. We could utilize an eigenfuncti
method, such as that of Appendix D, but choose a v
simple approach to solve Eq.~19!. The process is simply to
represent Eq.~19! as a matrix equation

~K1I ! f̄5d, ~32!

whereK andI are matrices andf̄ andd are vectors. We then
invert (K1I ) to solve for f̄. ThusK(vl ,vm) is represented
a

y

at discrete frequency points, in effect a discrete basis of s
tial d functions, e.g.,Kvl ,vm

5K(vl ,vm). Similarly, f̄ (vl)

andd(vl) are represented at discrete frequency points. Fr
the definition in Eq.~15!, we see that if we introduce th
function f (vl ,t) @which we denote asf (t) for simplicity#
via

f ~vl ,t !5exp@2 i ~vl2v2!t#b1l~ t !, ~33!

then f (t) is the function whose Laplace transform isf̄ (s)
[ f̄ (vl ,s). However, in order to obtain the real and imag
nary parts off (t), we will need the separate inverse Lapla
transformsf̄ r(s), f̄ i(s) which are the Laplace transforms o
the real and imaginary parts off (t)5 f r(t)1 i f i(t). For com-
plex s the latter Laplace transformscannotbe obtained by
9-6
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just writing f̄ (s) as the sum of its real and imaginary par
However, the Laplace transformf̄ r(s) of the real partf r(t) is
real @and similarly the Laplace transformf̄ i(s) of the imagi-
nary partf i(t) is real#, if the Laplace transform parameters

is real. Hence, the real and imaginary parts off̄ (s) are equal
to the Laplace transforms of the real and imaginary parts
f (t) for s on the real axis, so Ref̄ (s)5 f̄ r(s),Imf̄ (s)5 f̄ i(s)
for s real. As f̄ (s) is an analytic function ofs, the analytic
continuation of f̄ r(s)1 i f̄ i(s) from the real axis will deter-
mine f̄ (s) everywhere.

In this example, if we discretizeK(vl ,vm) on anN3N
grid we define theN3N complex matricesK r andK i from
the real and imaginary parts of Eq.~30! on the reals axis,
and then Eq.~32! becomes

S K r1I 2K i

K i K r1I D S f̄ r

f̄ i
D 5S dr

di
D , ~34!

for s on the real axis. The formal solution forf̄ r5 f̄ r(s) and
f̄ i5 f̄ i(s) for reals then generates the solution forf̄(s) every-
where. Because of this@and having first identifiedK r ,K i , dr
anddi for realsusing Eqs.~21! and~20!#, we cannowregard
Eq. ~34! as applying forall s. This approach could not b
used if the real and imaginary parts ofK(vl ,vm) andd(vl)
on the reals axis are not analytic. The matrix inversion ste
thus involves a matrix with 4N2 elements compared to, sa
O(N4) elements represented by Eqs.~6!–~9! in an equivalent
discretized form.

Thus we solve forf̄ r and f̄ i in Eq. ~34!, and hence deter
mine theb̄1l„s1 i (vl2v2)… of Eq. ~15!. We then find the
b̄2(s) from the scalar product form Eq.~23! obtained from
Eq. ~6! so that

b̄2r~s!5~11r• f̄ i !/s,

b̄2r~s!52r• f̄ r /s, ~35!

wherer[$rlgl2
2 %. Finally, b2(t) is determined by a numeri

cal inverse Laplace transform.
Figure 2 shows some results for this numerical ma

approach with the kernel given in Eq.~30!, which was de-
rived from the reservoir structure function in Eq.~29!. The
three curves show the upper-state population for three di
ent sizes of matrix which were used to discretize the integ
equation. Each case used the same parametersV51 andG
51, where there is a distinct non-Markovian evolution th
could not be treated perturbatively because of the strong
pling to the reservoir structure. The solid curve in Fig.
shows a good result that was obtained with a matrix of s
1503150 for this problem. Reducing the matrix size
1003100 ~dashed! results in only a slight degradation of th
result. However, further reduction of the matrix size affe
the numerical result quite badly.

The effect of changing the coupling strengthV is shown
in Fig. 3. The probability of finding the atomic system in th
highest atomic state is shown. For strong coupling@Fig. 3~a!#
03380
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we see damped oscillations that are a typical manifestatio
non-Markovian processes. As the coupling is reduced@Fig.
3~b!#, the oscillations weaken and then further reductions
the coupling strengthV @Fig. 3~c!# result in no oscillations
and decay that is closer to exponential and on a longer t
scale than the strong coupling cases. Fig. 3~c! still shows
some visible initial quadratic behavior because of the re
tively high value ofV/G.

B. Equivalent pseudo mode model

The reservoir structure function given in Eq.~29! is ex-
tremely simple and guided by our previous work we c
reproduce the results of Fig. 3, i.e., the populationub2(t)u2,
from the Markovian master equation

FIG. 2. Time evolution of the probability of finding the syste
in state 2;P(t)5ub2(t)u2. The reservoir structure function is give
by Eq. ~29! with G51 andV51 in scaled units. The grid size fo
the discretized kernel was 1503150 ~solid!, 1003100 ~dashed!,
and 50350 ~dotted!. In each case a range of630 for vl2v0 and
vm2v0 was chosen. The result for a grid size of 1503150 ~solid
curve! gives a reasonably accurate result.

FIG. 3. Time evolution of the probability of finding the syste
in state 2;P(t)5ub2(t)u2. The reservoir structure function is Eq
~29! with G51 and ~a! V55.0, ~b! V51.0, and~c! V50.3, in
scaled units. The grid size for the discretized kernel was 1
3150 chosen with a range of630 for vl2v0 and vm2v0 in
scaled units~as in Fig. 2!.
9-7
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]r̂

]t
52 i @V̂,r̂ #2

G

2
~ â†âr̂1 r̂â†âr̂22âr̂â†!, ~36!

which is given in the interaction picture with the atom-fie
coupling term

V̂5V~ â†u0&^1u1âu1&^0u1â†u1&^2u1âu2&^1u!. ~37!

In this master equation we have introduced a single osc
tor, or pseudomode@20#, which is represented by th
harmonic-oscillator operatorsâ andâ†. In this approach~see
Ref. @20#! pseudomodes are introduced as assumed bos
entities, rather than via constructing pseudomode amplitu
A cascade atom resonantly coupled to a damped h
Q-cavity mode, which is also coupled to a Markovian bath
vacuum modes, is an example of a physical system wh
has the same master equation as Eq.~36!. Such a model was
considered in our earlier work@4#, where we showed tha
multiple excitations of a structured reservoir could be trea
for reservoir structure functions such as Eq.~29!. To utilize
the present pseudomode model we solve the master equ
~36! with the initial condition of an empty pseudomode a
the atom in the stateu2&. On tracing out the pseudomode,
obtain atomic properties alone, we can reproduce the res
of the matrix method used with the kernel of Eq.~30!. It
should be emphasized that it does not appear to be ea
find such a simple master equation for more complex re
voir structures such as photonic band-gap models w
branch cuts in the reservoir structure function. In such a c
the approach outlined in this paper~which only depends on
the reservoir structure functions! may be useful instead. Fo
the present Lorentzian model, the agreement between
matrix method given earlier in this section and the mas
equation~36! is excellent.

IV. DYNAMICAL THEORY FOR TWO SEPARATE
RESERVOIRS

In this paper we have commented in several places
there are differences in our single reservoir treatment fr
the simpler case of separate reservoirs coupled to the
transitions in our model system. In our model, the two ph
tons may be emitted in either order, whereas with the dis
guishable photons in the two reservoir model, only one or
of emission is involved. So, with the formalism now com
plete, it is instructive to look at the explicit differences b
tween our model and the simpler two separate reserv
model of the kind considered in Ref.@33#. In this case the
Hamiltonian in Eq.~1! is replaced by

Ĥ5\Fv1u1&^1u1~v11v2!u2&^2u1(
l

vlâl
†âl

1(
m

vmb̂m
† b̂m1(

m
gm1~ b̂m

† u0&^1u1b̂mu1&^0u!

1(
l

gl2~ âl
†u1&^2u1âlu2&^1u!G , ~38!
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where the bath operatorsâl
† and âl for the first bath now

couple only to the 1↔2 transition, and the new bath oper
tors b̂m

† and b̂m for the second bath couple only to the 0↔1
transition. For the initial-state vector, Eq.~3!, the state vector
analogous to Eq.~2! no longer contains a term involving
c0ll , and there is no restriction over the double suml,m,
since the two types of bath modes are now distinct. We
write

uC~ t !&5c2e2 i (v11v2)tu2&u0l&u0m&

1(
l

c1le2 i (v11vl)tu1&u1l&u0m&

1(
l,m

c0lme2 i (vl1vm)tu0&u1l&u1m&, ~39!

involving product states of the atom and one or zero exc
tion states of the two baths. The equations for the Lapl
transforms of the reduced amplitudes, Eqs.~6!–~9!, are then
replaced by

sb̄2~s!2152 i(
l

gl2
2 b̄1l„s1 i ~vl2v2!…, ~40!

sb̄1l~s!52 i(
m

gm1
2 b̄0lm„s1 i ~vm2v1!…

2 i b̄2„s1 i ~v22vl!…, ~41!

sb̄0lm~s!52 i b̄1l„s1 i ~v12vm!…. ~42!

We note that at this point the differences are that, as wel
the absence of theb̄0ll terms, there are no terms involvin
alm @as in Eqs.~7! and~9!# and there are no restrictions ove
the sum overm @as in Eq.~7!# These equations are equivale
to those in Ref.@33#.

As in the case of both transitions coupled to one sin
reservoir, the dynamical behavior only depends on reser
structure functions, and following the same approach as
Sec. II D it is easy to see that the atomic density operato
also determined from these functions.

If we now follow the elimination procedure of Sec. II C
we find the same equations~14!–~18! for f̄ , A, B, and C
except that the consequence of noalm term being present in
Eq. ~42! is that the quantityB becomes

B~vl ,vm!→B~vm!5r~vm!
gm2

2

s
. ~43!

Crucially B no longer depends onvl as previously. Expres-
sions for f̄ , A, andC are otherwise unchanged.

The integral equation then simplifies to the easily solva
form

A~vl! f̄ ~vl!1E dvmB~vm! f̄ ~vm!5C, ~44!

for which the solution is
9-8
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f̄ ~vl!5
C

11E dvmK~vm ,vm!

1

A~vl!
. ~45!

In this case the equivalent kernel is separable:K(vl ,vm)
5B(vm)/A(vl).

We can apply our results to the situation analogous to
treated in Sec. III A, where both reservoirs, though n
separate, have identical coupling constants and rese
structure functions, and the two atomic transitions
equally spaced and resonant with the reservoir structures
utilize Eqs.~27!–~29! and, for this simple model, the kerne
can be easily obtained as

K~vl ,vm!5
GV2

2p

@s1 i ~vl2v0!1G/2#

s@~vm2v0!21~G/2!2#Q~vl2v0!
.

~46!

This result may be compared to the previous expressio
Eq. ~30! for the case of a single reservoir.

The integral*dvmK(vm ,vm) can be performed by usin
a contour in the lower-half plane, and we obtain

E dvmK~vm ,vm!5
V2

s

s1G

~s1G/2!~s1G!1V2
. ~47!

We may now find from Eq.~16! that

A~vl!5s1 i ~vl2v0!1
V2

s1G/21 i ~vl2v0!
~48!

so the solution forf̄ (vl) can be obtained from Eq.~45!. We
find that

f̄ ~vl!52 i
@~s1G/2!~s1G!1V2#@s1 i ~vl2v0!1G/2#

~s1G/2!@s~s1G!12V2#Q~vl2v0!
.

~49!

A numerical inversion off̄ (vl) can be performed to ob
tain b2(t) using the same approach as in Sec. III A. Ho
ever, the reservoir structure, Eq.~29!, is sufficiently simple
that a solution forb2(t) can be found from Eq.~49!. We first
need to perform the integral in Eq.~23! which is facilitated
by the fact that Eq.~49! has no poles in the lower-half com
plex plane@for Re(s).0], while the factorr(vl)gl2

2 in Eq.
~23! has only a single pole in the lower-half complex plane
we use the example given in Eq.~29!. Then if we perform
the integral of Eq.~23! around the single lower-half plan
pole we find that

b2~s!5
1

s
2V2

s1G

s~s1G/2!@s~s1G!12V2#
. ~50!

If we now perform the inverse Laplace transform, we find
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b2~ t !5
V2

b2
e2Gt/21S 12

V2

b2 D e2Gt/2cos~bt !

1
G

2b
e2Gt/2sin~bt !, ~51!

whereb252V22(G/2)2.
The result for the time evolution of the probability fo

finding the atom in the highest atomic state is seen in Fig
There is clearly a difference from the single reservoir res
shown in Fig. 3~the dashed line in Fig. 4!. The present
situation, where both atomic transition frequencies are eq
and resonant with the structured reservoir, should highli
the difference between the cases of two separate or
single reservoir. In this situation both photons emitted sho
have similar frequencies, and the single reservoir case w
the first emitted photon cannot be distinguished from
other should give different results to the two distinct res
voir case where they can be distinguished.

We note that for strongly coupled systems, 2V2

.(G/2)2, the time evolution in Eq.~51! can be reexpresse
in the form

b2~ t !5
2V2

2V22~G/2!2
sin2~bt/21f!e2Gt/2, ~52!

where

cosf5
G/2

A2V
. ~53!

What is interesting here are the oscillations that are given
the square of a sine function, i.e., the probability oscillates
the fourth power of a sine function which is damped at t
rate G. In the limit V@G the anglef approachesp/2 and
Eq. ~52! reduces tob2(t)'cos2(Vt/A2)e2Gt/2.

FIG. 4. Time evolution of the probability of finding the syste
in state 2;P(t)5ub2(t)u2. The reservoir structure function is Eq
~29! with G51 and V51.0. The two curves show the effect o
changing from two separate reservoirs~solid line! to a single reser-
voir ~dashed line!. ~Other parameters are as given in Fig. 2. T
dashed line in this figure is identical to the solid line in Fig. 2.!
9-9
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B. J. DALTON AND B. M. GARRAWAY PHYSICAL REVIEW A 68, 033809 ~2003!
Conversely, for weakly coupled systems, 2V2,(G/2)2,
the time evolution in Eq.~51! can be reexpressed in the for

b2~ t !5
2V2

~G/2!222V2
sinh2~gt/21j!e2Gt/2, ~54!

whereg25(G/2)222V2 and

coshj5
G/2

A2V
. ~55!

In the extreme limit ofV!G, Eq. ~54! reduces to the Ferm
golden-rule result:b2(t)'exp(22V2t/G).

V. CONCLUSION

The dynamical behavior of a three-level atom in a casc
configuration in which both transitions are coupled to
single structured reservoir of electromagnetic field mod
and initially in the upper state, has been analyzed via Lap
transform methods. This situation involves a two-photon
citation of the reservoir, and our equations take into acco
the two possible sequences in which these two photons
emitted. We have shown that the atomic density operato
determined from the solutions of integral equations, in wh
the properties of the structured reservoir only appear via
called reservoir structure functions, all essentially given
the product of the mode density times the square of coup
constants. In the cascade system two distinct reservoir s
ture functions are involved since there are two transitio
The dependence of the dynamics solely on reservoir st
ture functions is the necessary condition for treating str
tured reservoir problems via pseudomode theory, so our
sults suggest that it may be possible to extend
pseudomode theory to problems involving more than
single-photon excitation of the reservoir.

This result also shows that any existing system could
replaced by an equivalent system, provided that the reser
structure functions were the same in both models. This is
basis of the treatment of superradiance in a photonic ba
gap continuum@28# and the general treatment of multiphoto
excitation in terms of quasimodes given in our earlier wo
@4#.

In addition, a similar treatment of the dynamical behav
of a three-level atom in a cascade configuration coupled
two separate structured reservoirs of electromagnetic fi
modes, and initially in the upper state, has been carried
One reservoir is coupled to the upper transition, the othe
the lower transition. This situation again involves a tw
photon excitation of the reservoir, but now only one possi
photon emission sequence is involved. In this situation,
equations are simpler, and the integral equation for the
plitudes can be solved analytically. Again, the dynamical f
tures only depend on reservoir structure functions.

A numerical method of solving the integral equatio
based on discretizing the frequency space has also bee
tained, and which can be applied to various structured re
voir situations—such as for high-Q cavities and photonic
band-gap systems. Here we have applied this method
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numerical test for a high-Q-cavity situation, where the sam
Lorentzian reservoir structure function applies to both tra
sitions, showing the non-Markovian decay of the excit
state. Results for both the single structured reservoir case
the two separate reservoirs case have been obtained, sho
the different behavior in the two cases. This difference is
be expected, as the two photons emitted should have sim
frequencies, and only in the two separate reservoirs ca
should it be possible to distinguish which order the photo
were emitted. In this latter case we were able to solve
model problem analytically. Finally, a formal solution of th
integral equations based on the biorthogonal left and ri
eigenfunctions of the non-Hermitian kernel has been p
sented for completeness in the appendixes.

Our treatment of the cascade system coupled to a st
tured reservoir may be compared to those of Ref.@33# in the
two separate reservoirs case and to Ref.@31# in the single
reservoir case. Both these papers also demonstrate
Markovian decay of the excited state. Our fundamental a
plitude equations in Secs. II B and IV agree with those
these authors. The work in Ref.@31# differs from our treat-
ment, because it is based on replacing the structured re
voir with discrete modes and then using numerical metho
The work in Ref.@33# is analytic. However, a direct com
parison of the numerical results is not yet possible with
ther Ref.@31# or Ref. @33#, since both applied their theory t
a photonic band-gap system whereas our present applica
is for the equally important situation of a high-Q cavity.
Further applications of our theory involving good analy
approximations to the reservoir structure functions for ph
tonic band-gap systems will, however, enable more deta
comparisons to be made.
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APPENDIX A: INTEGRAL EQUATION KERNEL
AND ITS EIGENFUNCTIONS

The kernelK(vl ,vm) involved in the integral equation
~19! and given by Eq.~21! may now be used to define a
integral operatorK̂. The effect ofK̂ on any functionf is
defined by

~K̂f!vl
5E dvmK~vl ,vm!f~vm!. ~A1!

The eigenfunctionsfn(vl) and eigenvaluesjn for the
integral operatorK̂ then satisfy

K̂fn5jnfn ~A2!

or ~in full !

E dvmK~vl ,vm!fn~vm!5jnfn~vl!. ~A3!
9-10
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NON-MARKOVIAN DECAY OF A THREE LEVEL . . . PHYSICAL REVIEW A 68, 033809 ~2003!
Note that we are following Ref.@35# in our definition of the
eigenvalue of the integral equation, rather than the defini
used in many mathematical textbooks~e.g., Ref.@34#! where
1/jn would be the equivalent eigenvalue.

Similarly to Eq.~A1!, we can define the adjoint operato
K̂† via

~K̂†f!vl
5E dvmK* ~vm ,vl!f~vm! ~A4!

with eigenfunctionsun(vl) so that

K̂†un5jn* un . ~A5!

It is straightforward to show thatK̂† has eigenvalues that ar
complex conjugates of those forK̂ ~see Appendix B for de-
tails!. As K̂ will in general be non-Hermitian, the eigenfun
tions fn do not satisfy standard orthogonality condition
Instead thefn and theun satisfy so-called biorthogonality
conditions

E dvmun* ~vl!fm~vl!5dnm . ~A6!

The normalization result of unity forn5m can be arranged
by scaling either theun or fm by appropriate factors. Al-
though these results are familiar in regard to the mode fu
tions for unstable optical systems~ @35,36#!, these are not
widely used in quantum optics. So, for completeness, a d
vation of Eq. ~A6! is presented in Appendix C. A forma
method of determining the eigenfunctionsfn and un is set
out in Appendix B.

APPENDIX B: REPRESENTATION OF THE KERNEL

We expandfn in an orthonormal basisun so that

fn~vl!5(
m

am
n um~vl! ~B1!

with

E dvlul* ~vl!um~vl!5d lm . ~B2!

Then we can write Eq.~A3! as

(
m

E dvmam
n K~vl ,vm!um~vm!5jn(

m
am

n um~vl!.

~B3!

Then if we multiply byul* (vl) and integrate, we find

(
m

S E E dvldvmul* ~vl!K~vl ,vm!um~vm!2d lmjnDam
n

50, ~B4!

which must be true for all values ofl. Equation~B4! is a
matrix eigenvalue equation with the matrix
03380
n

.

c-

ri-

Klm5E E dvldvmul* ~vl!K~vl ,vm!um~vm! ~B5!

and eigenvalues that satisfy

uKlm2jd lmu50. ~B6!

For the operatorK̂† @see Eq.~A4!# the matrix is replaced by
its adjoint and clearly its eigenvalues are complex conjuga
of those forK̂.

The explicit form forKlm is found by substitution of ex-
pressions~21! and ~17! into Eq. ~B5!, which yields

Klm5E E dvldvmul* ~vl!F 1

A~vl!

3S r~vm!gm1
2 gl1gm2

gl2gm1

1

s1 i ~vl1vm2v12v2!

1
r~vm!gm2

2

s D Gum~vm!. ~B7!

The integral overvm will involve the reservoir structure
functions as defined in Eq.~22!. The functionA(vl) is also
obtainable from the reservoir structure functions@see Eq.
~16!#. Note thatgl1gm2 /gl2gm1 is independent of frequenc
in Eq. ~B7!.

In summary, the matrixKlm and hence the eigenfunction
fn ,un and eigenvalues are all obtained from the reserv
structure functions and given functions, such as the basis
un .

APPENDIX C: BIORTHOGONALITY
OF EIGENFUNCTIONS

To show that the eigenfunctions satisfy a biorthogona
condition we first write from Eqs.~A2! and~A3!, ~A4!, ~A5!

E dvmK~vl ,vm!fn~vm!5jnfn~vl!,

E dvmK~vm ,vl!um* ~vm!5jmum* ~vl!. ~C1!

After multiplying the first equation byum* (vl), the second
by fn(vl), and then integrating overvl , we find that

E E dvldvmum* ~vl!K~vl ,vm!fn~vm!

5jnE dvlum* ~vl!fn~vl!,

E E dvldvmfn~vl!K~vl ,vm!um* ~vm!

5jmE dvlum* ~vl!fn~vl!. ~C2!
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After a change of variable in the second equation, the l
hand sides are equal and we then conclude that

~jn2jm!E dvlum* ~vl!fn~vl!50, ~C3!

so that the biorthogonality condition

E dvlum* ~vl!fn~vl!50 ~C4!

applies unlessjm5jn .

APPENDIX D: INTEGRAL EQUATION SOLUTION
IN TERMS OF EIGENFUNCTIONS OF K

We will assumethat the set of eigenfunctionsfn form a
basis for expanding the solutionf̄ (vl) @to Eq. ~19!#. Like-
wise we will assume thatd(vl) can be expanded in terms o
the fn so that

f̄ ~vl!5(
n

f̄ nfn~vl!,

d~vl!5(
n

dnfn~vl!. ~D1!

Using the biorthogonality of the eigenfunctions@Eq. ~A6!#
the expansion coefficients can be found as

f̄ n5E dvlun* ~vl! f̄ ~vl!,
a-

s

S

. A

.

03380
t-
dn5E dvlun* ~vl!d~vl!. ~D2!

Substituting Eq.~D1! into Eq. ~19! and using the eigenvalu
equation~A3! we find that

(
n

f̄ nfn~vl!1(
n

f̄ nE dvmK~vl ,vm!fn~vm!

5(
n

dnfn~vl!,

(
n

~ f̄ n1jnf̄ n2dn!fn~vl!50. ~D3!

Using the biorthogonality result for the eigenvaluejn we see
that

f̄ n~11jn!2dn50, ~D4!

so that providedjnÞ21

f̄ n5
dn

11jn
, ~D5!

which gives the solutions for the expansion coefficients
f̄ (vl) in terms of known quantities. The quantitie
f̄ n ,fn(vl),K(vl ,vm), andjn are, of course, all functions
of the Laplace variables, but for simplicity of notations is
left implicit.
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